Protein NMR Spectroscopy

Applications in Biological Sciences

中科院微生物所 2011年7月

Nuclear Magnetic Resonance (NMR)

Boltzmann Distribution

Schrödinger equation: $E\Psi = H\Psi$

Energy difference: $\Delta \mathbf{E} = (h/2\pi) \gamma \mathbf{B} = \hbar \omega$

>Larmor frequency: $\omega = \gamma B$

>Larmor frequency is the resonance frequency to create transitions between the energy levels.

>Larmor frequency ranges for ¹H encountered in modern NMR spectroscopy from 50 to 900 MHz.

Bio-NMR active

nucleu	1	γ (10 ⁷ /T·s)	abundanc	sensitivity
S			e	
¹ H	1/2	26.752	99.98	1
² H	1	4.107	0.02	0.00964
¹³ C	1/2	6.728	1.11	0.01559
¹⁵ N	1/2	-2.712	0.36	0.00104
³¹ P	1	1.0841	100	0.0664

NMR SPECTROSCOPY

- Key method for obtaining high resolution structure
 -----in addition to X-ray Structure
- Physiological temperature and condition -----closer to native functional state
- Structural information without solving structure -----binding interaction, molecular motion, ect
- > Dynamics

----motional properties

- Protein size limitation: ~ 50 kDa -----new methodology, higher magnetic field
- Time consuming for data analysis
 ----software for automated data analysis

The NMR World

NMR Structure Determination

Protein Structure by NMR

Progress in Structural Biology

PDB Current Holdings Breakdown

Exp.Method	Proteins	Nucleic Acids	Protein/NA Complexes	Other	Total
X-RAY	57898	1260	2784	17	61959
NMR	7657	934	168	7	8766
ELECTRON MICROSCOPY	245	22	86	0	353
HYBRID	28	2	1	1	32
other	132	4	5	13	154
Total	65960	2222	3044	38	71264

As of 2011

Progress in NMR

Recent Advances in Biomolecular <u>NMR</u>

- Large proteins
- Protein dynamics
- Residual dipolar couplings
- Protein-protein interactions and complexes
- Membrane proteins, In-Cell NMR, etc
- Automation & novel structure calculation methods
- Biomolecular NMR & drug discovery

Large Proteins by NMR

- ¹H homonuclear 2D NMR → peptides and small proteins (< 10 kDa)
- ¹³C/¹⁵N labeling, 3D/4D NMR → proteins 10-30 kDa
- Main obstacles for larger proteins:
 - 1. Decrease in $T_2 \rightarrow$ line broadening, loss of sensitivity and resolution
 - 2. Overcrowded signals \rightarrow loss of resolution

Large Proteins by NMR

Hardware --- higher magnetic field, cryo-probe, ¹³C detection, etc

Significant increasing of the cost!

Still, Other factors...

~\$8,000,000

~\$4,500,000

~\$800,000 ~\$2,000,000

Complicated...

Large Proteins by NMR

• NMR techniques --- TROSY, CRINEPT, etc

TROSY: Cancellation of DD and CSA, select the multiplet component with the narrowest linewidth

Pervushin (2000) Q Rev Biophys

CRINEPT: Cross-Relaxation Enhanced Polarization

Riek et al (1999) PNAS

Figure 2. Comparison of 2D (¹³C₍₂, NH) projections from 3D HNCA spectra recorded of a 23-kDa Shc PTB domain/phosphotyrosine peptide complex. (a) ¹⁵N, ¹³C, ¹H uniformly labeled Shc PTB domain. (b) ¹⁵N, ¹³C, 75% ²H uniformly labeled Shc PTB domain. Reprinted with permission from Sattler and Fesik (1996).

SAIL

- SAIL: stereo-array isotope labeling •
- Reduced spectral complexity ۲
- Improved sensitivity and resolution

Figure 1 | SAIL amino acids. Design concepts embodied in the SAIL amino acids incorporated into CaM and MBP13-15.

Kainosho et al (2006) Nature

SAIL

Large Proteins by NMR

1. Global fold of an 82-kDa enzyme malate synthase G

Tugarinov et al (2002) JACS Tugarinov et al (2005) PNAS

3. Site-specific interactions and dynamics in 670-kDa 20S proteasome

Sprangers et al (2007) Nature Methods

2. Mapping binding interface 900-kDa GroEL-GroES complex

4. NMR structures of 42-kDa MBP & 65kDa hemoglobin using fully-protonated samples

Xu et al (2006) Nature Methods

Fiaux et al (2002) Nature

Protein Dynamics

Why Dynamics?

- Static three-dimensional structures alone often do not completely explain results from the biological assays, nor do they illuminate the path for protein engineering or rational drug design.
- The goal of dynamics studies is to bridge the gap between the static and dynamic pictures of molecular structure and to demonstrate how motion relates function.

Protein Dynamics by NMR

- Protein dynamics & enzyme catalysis
- Protein dynamics & folding
- Protein dynamics & proteinprotein/protein-ligand interactions
- Protein dynamics in intrinsically disordered proteins

Relaxation Dispersion

- Many of the important biological processes, (eg. protein interaction and signaling, enzyme catalysis, folding, allostery) involve conversion to low-populated, transient 'excited' states.
- These 'invisible' low-populated states are difficult to study using conventional methods, but can be probed using relaxation dispersion experiments by NMR.

Relaxation Dispersion

Quantifying micro- to milli-second timescale conformational exchanges.

Providing kinetic, thermodynamic and structural information of the conformational exchange process.

Loria et al (2008) Acc Chem Res

Korzhnev & Kay (2007) Acc Chem Res

Relaxation Dispersion: Applications

Protein folding intermediates

Enzyme catalysis

Korzhnev & Kay (2007) Acc Chem Res

Boehr et al (2006) Science

Residual Dipolar Couplings

Theoretical background

Isotropic tumbling

All orientations of the molecules are equivalent

Anisotropic tumbling

Some orientations are preferred to others

Alignment tensor

- The molecule prefers to be oriented in one direction of the space.
- Need of a mathematical expression (ex. according to magnetic field B_0).
- Not in laboratory frame but in molecular frame: easier to manipulate

What happens to the spectra?

¹⁵N-HSQC undecoupled in the indirect dimension

Residual Dipolar Couplings

Magnetic dipole-dipole coupling

Bax (2003) Protein Sci

In slightly anisotropic solution, the proteins are weakly aligned.

The alignment tensor:

http://www.nmr.chem.uu.nl/education/module/module_doc/theory.html Dosset et al (2001) *JBNMR*

What are RDCs for?

Potentially, everything related to:

- the orientation of an intramolecular vector (ex. HN)
 - structure validation
 - structure refinement (additional experimental restraints to NOE, dihedral angle, ...)
 - relative domain orientation
 - motion of the vector
 - analysis of conformational equilibrium
- the shape of the molecule
 - distinguish between a monomer, dimer....

<u>Power of RDC</u>: global information (contained in alignment tensor)

Residual Dipolar Couplings

- Applications:
- ✓ Protein structure refinement

Bax & Grishaev (2005) COSB

✓ Intermolecular complexes and domain-domain orientations

Residual Dipolar Couplings

- Applications:
 - ✓ Protein structure by molecular fragment replacement (MFR)

Bax (2003) Protein Sci

✓ Protein dynamics

Lange et al (2008) Science

Paramagnetic Relaxation Enhancement (PRE)

PRE

- Arise from unpaired electrons: paramagnetic centers
- Effective distance: up to 35 Å (depending on the paramagnetic group)

PRE through direct dipole-dipole interactions

Longitudinal PRE rate

$$\Gamma_1 = \frac{2}{5} \left(\frac{\mu_0}{4\pi}\right)^2 \gamma_{\mathrm{I}}^2 g^2 \mu_{\mathrm{B}}^2 S(S+1) J_{\mathrm{SB}}(\omega_{\mathrm{I}})$$

Transverse PRE rate

$$\Gamma_2 = \frac{1}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \gamma_{\rm I}^2 g^2 \mu_{\rm B}^2 S(S+1) \{4J_{\rm SB}(0) + 3J_{\rm SB}(\omega_{\rm I})\}$$

$$J_{\rm SB}(\omega) = r^{-6} \frac{\tau_{\rm c}}{1 + (\omega \tau_{\rm c})^2}$$

g: the electron g-factor $\tau_{\rm c} = (\tau_{\rm r}^{-1} + \tau_{\rm s}^{-1})^{-1}$ $\tau_{\rm r}$: the rotational correlation time of the macromolecule $\tau_{\rm s}$: the effective electron relaxation time.
Diamagnetic

Paramagnetic

Different types of PRE

Solvent PRe

Paramagnetic Probes

(1) nitroxide stable radicals, >N-O•

(2) metal chelators (such as EDTA, DTPA, and metalbinding peptides) that bind paramagnetic metal ions with very high affinity.

Applications of PRE

- New long-range structural restraints for protein structure determination
- Protein-Nucleic acid interactions
- Encounter complexes in protein-protein interaction / Transient, weak interactions
- Dynamics information, lowly populated states
- •

Protein Interactions and Complexes

Conformational Switch

Jin Lab, **JBC**, 2005

Structural snapshots along the reaction

NMR Methods for Studying Protein Interactions

Chemical shift perturbation

SAR by NMR

- Chemical shift perturbation
- Chemical shift perturbation in combination with TROSY methods for larger proteins

Pellecchia (2005) Chem & Biol

Membrane protein structures by solution NMR

- Protein expression, sample preparation in detergent micelles
- Using deuteration and refolding strategies
- Using a combination of TROSY, RDC and PRE (Paramagnetic Relaxation Enhancements) methods

Tamm & Liang (2006) PNMRS

Solution NMR structure of the TatA component of the twin-arginine protein transport system from Gram-positive bacterium *Bacillus sutilis*

Hu et al, J. Am. Chem. Soc. 132, 15942, 2010

In-cell NMR

In vivo HSQC after IPTG induction

In vitro HSQC of purified sample

Serber et al. (2001) JACS

In-cell NMR: applications

Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR)

Sequentially express two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring the protein interactions using in-cell NMR

Burz et al. (2006) Nat Methods

In-cell NMR: applications

 In-cell NMR in Xenopus laevis oocytes → mimicking eukaryotic cellular environment

Charlton & Pielak (2006) PNAS

Selenko et al (2006) PNAS

Automation & novel structure calculation methods

Novel structure calculation methods

- Molecular fragment replacement (MFR) using RDC data and database search
- Deriving molecular proton density from NOE cross peaks – the CLOUDS method
 → no assignments needed
- Structure calculation using only RDC data
- Simultaneously determination of backbone structure and dynamics from RDC

Hus et al (2001) JACS

Delaglio: www.nmrscience.com

Grishaev & Llinas (2002) PNAS

Biomolecular NMR & Drug Discovery

SAR by NMR

Proposed by the Abbott Laboratories (Stephen Fesik) SAR: Structure-Activity Relationship

Chemical shift perturbation

Chemical shift perturbation

SAR by NMR in fragment-based drug design (FBDD)

- Screening smaller numbers of compounds (typically several thousand) to find low-affinity fragments (with K_d values in the high uM to mM range)
- By proper optimization and tethering of the low-affinity fragments to produce highaffinity molecule

Cyan: low-affinity fragment leads Green: high-affinity linked compounds

Hajduk & Greer (2007) Nat Rev Drug Discov

Solution structures of the TatA component of bacterial twin-arginine protein translocation system

Protein translocation across membrane

- Sec-pathway
- Tat-pathway

Signal peptide:

Natale P et al (2008) Biochim Biophys Acta 1778:1735-1756

Twin-arginine translocation (Tat) pathway

- Identified in bacteria, plant chloroplasts, archaea and some plant mitochondria
- Recognizes the twin-arginine motif of the signal peptide → <u>Twin-Arginine</u> <u>Translocation (Tat) system</u>

Major differences between Sec and Tat systems

	Sec	Tat
RR motif in signal peptide	-	+
State of the target protein during translocation	unfolded	folded
Energy source	ATP	proton motive force

- Unique challenges for Tat system:
 - Hydrophilic environment for translocation of fully folded proteins
 - Variable protein translocation channel sizes for different substrates

Proposed mechanism of TatABC system

In Escherichia coli and plant chloroplasts

- Minimal functional components: TatA, TatB, TatC
 - TatA & TatB: single transmembrane protein
 - TatC: six transmembrane segments
- TatBC: recognition of signal peptide & recruitment of TatA component
- TatA: forms the protein translocation channel via selfoligomerization

Palmer T et al (2005) Trends Microbiol 13:175-180

TatABC system vs TatAC system

Sargent F (2007) Biochem Soc Trans 35:835-847

The channel-forming subunit: TatA

- Single transmembrane protein
- Two predicted helices:
 TMH and APH

Evidence for the channel-forming role of *E. coli* TatA:

- Self-oligomerization
- Ring structure with various diameters *in vitro* by EM
- Ring structure model by in vivo single-molecule imaging

Gohlke U *et al* (2005) *PNAS* 102:10482-10486

Leake MC et al (2008) PNAS 105:15376-15381

Dual topology of TatA

Proposed topology switch associated with protein transport

Gouffi K et al (2004) J Biol Chem 279:11608-11615

Chan CS et al (2007) Biochemistry 46:7396-7404

The channel-forming subunit: TatA

B. subtilis TatA_d:

- Soluble form: micelles
- Membrane-bound form: homomultimeric complexes
 - homogeneous size
 - diameter ~10 nm
- Proposed mechanism
 - Soluble fraction of TatA_d binds target proteins and recruits them to the cell membrane for translocation
 - Dual role of TatA_d: a combination of TatA and TatB in TatABC system

Westermann M *et al* (2006) *Biochim Biophys Acta* 1758:443-4451

Questions to be answered:

- Structural properties of TatA channels
- Mechanism of self-oligomerization (controlling pore size)
- Conformational changes during protein translocation
- Sequence and/or structural determinants of the different functions of TatA and TatB subunits

Structural information of TatA(B) in different functional states

Overall morphology (EM)

Inter-subunit contacts (EPR)

Gohlke U et al (2005) PNAS 102:10482-10486

White GF et al (2010) J Biol Chem 285:2294-2301

High resolution structures

- sample inhomogeneity
- dynamic assembly
- ➢ intrinsic flexibility

Aims of the solution NMR study:

- High-resolution structures of TatA in monomeric (and lowoligomeric) state
- Self-oligomerization mechanism
- Conformational dynamics

TatAC system: *B. subtilis* TatA_d and TatA_y TatABC system: *E. coli* TatA

B. subtilis TatA_d

10203040MFSNIGIPGL ILIFVIALII FGPSKLPEIG RAAGRTLLEF506070KSATKSLVSG DEKEEKSAEL TAVKQDKNAG

Transmembrane segment prediction (TMHMM)

Amino acids: 70 Mw: 7430.7 Theoretical pl: 8.07

Secondary structure predictions (GOR)

CD characterization of BsTatA_d

Full-length BsTatA_d: high helical content

BsTatA_d- Δ TMH:

Unstructured in aqueous solution;

Induced helical structures in detergent micelles

2D HSQC of BsTatA_d in DPC micelles

NMR structure of $\mathsf{BsTatA}_\mathsf{d}$ using NOE, dihedral angle and RDC restraints

RDC measurements

RDC medium: G-tetrad DNA (Lorieau J et al. JACS 2008) ٠

0¹ 0^{-} 0^{2} 0^{43} 0^{30}

-100

28 09

40 0 33 O

0

¹⁵N RCSA (ppb)

100

200

-10

-20

-30 L -200

TMH region

Local conformation at the hinge region

1020304050MFSNIGIPGLILIFVIALIIFGPSKLPEIGRAAGRTLLEFKSATKSLVSG6070---DEKEEKSAELTAVKQDKNAG---

- Consensus sequence of TatA family: FG
- Consensus sequence of TatB family: GPxxLP

A		i	10	2 (30	40	50	60	
	TATAD_BACSU	MFSNIG.	IPGLILI	FVIALI	FGPSKLP	EIGRAAGR	TLLEFKSA	TKSLVSGDEKE	EKSAELTAVKQDK	AND
	TATAY_BACSU	MPIG.	PGSLAVI	AIVALI	FGPKKLP	ELGKAAGD	TLREFKNA	TKGLTS.DEEE	KKKEDQ	2
	TATA ECOLI	. MGGIS.	PAOLITI	AVIVVLI	FGTKKLG	SIGSDLGA.	SIKGFKKA	MSDDEPKQDKT	SQDADFTAKTIAD	NQ
	TATA HELPJ	MGGFTS	TWHWVI	LLVIVLI	FGAKKIP	ELAKGLGS	GIKNEKKA	VKDDE. EEAK	NELKTLDAOATOT	KV
	TATA MYCTU	.MGSLS.	PWHWAII	AVVVIVI	FGAKKLP	DAARSLGK	SLRIFKSE	VRELQ.NENK	AEASIETPTPVQS	QR
	_				and the second second		100 million (100 m			
			-							
В		1	10	20		30	40	50	60	
В	TATAD BACSU	i MFSNIGI		20 FVIALII	GPSKLP	3 0	40	50 KSLVSGDEKEE	60 KSAELTA.VKOD	N A
В	TATAD_BACSU TATAY_BACSU	i MFSNIG MPIGI	10 IPGLILI PGSLAVI	20 FVIALII AIVALII	GPSKLP GPKKLP	30 IGRAAGRT LGKAAGDT	40 LLEFKSAT LREFKNAT	50 KSLVSGDEKEE KGLTS.DEEEK	60 KSAELTA.VKQD KKED	KNA 2
В	TATAD_BACSU TATAY_BACSU TATB_ECOLI	1 MFSNIGI MPIGI .MFDIGI	10 IPGLILI PGSLAVI 7SELLLV	20 FVIALII AIVALII FIIGLVV	GPSKLP GPKKLP GPQRLP	30 IGRAAGRT LGKAAGDT AVKTVAGW	40 LLEFKSAT LREFKNAT IRALRSLA	50 KSLVSGDEKEE KGLTS.DEEEK TTVQNELTQEL	60 KSAELTA.VKQD KKED KLQEFQDSLKKV	KNA 2 EKA
В	TATAD_BACSU TATAY_BACSU TATB_ECOLI TATB_HAEIN	1 MFSNIG MPIGI .MFDIGI .MFDIGI	10 PGSLAVI SELLLV SELILL	20 FVIALII AIVALII FIIGLVV MVLGLVV	GPSKLP GPKKLP GPCRLP JGPKRLP	30 IGRAAGRT LGKAAGDT AVKTVAGW AIRTVMDW	40 LLEFKSAT LREFKNAT IRALRSLA VKTIRGLA	50 KSLVSGDEKEE KGLTS.DEEEK TTVQNELTQEL ANVQNELKQEL	60 KSAELTA.VKQD KKED KLQEFQDSLKKV KLQELQDSIKKAE	KNA KA ESL
В	TATAD_BACSU TATAY_BACSU TATB_ECOLI TATB_HAEIN TATB_HELPJ TATB_MYCTU	1 MFSNIG .MPIG .MFDIG .MFDIG .MFGMG	10 IPGLILI PGSLAVI FSELLLV FSELILL FFELLVV	20 FVIALII AIVALII FIIGLVV MVLGLVV LIVAIIF	FGPSKLP FGPKKLP IGPQRLP IGPERFP IGPERFP	3 0 IGRAAGRT LGKAAGDT AVKTVAGW AIRTVMDW AVVDIVKF	40 LLEFKSAT LREFKNAT IRALRSLA VKTIRGLA FRAVKKTL	50 KSLVSGDEKEE KGLTS.DEEEK TTVQNELTQEL ANVQNELKQEL NDAKDTLDKEI	60 KSAELTA.VKQD KKED KLQEFQDSLKKV KLQELQDSIKKA NIEEIKKETLEY CREEDDLECHLC	KNA KA SL KL

- TMH: fully buried
- N-terminal part of TMH (26-40): hydrophobic residues buried, hydrophilic residues partially exposed to water
- C-terminal part of TMH (41-48): mostly solvent exposed

Lange C et al (2007) Biochim Biophys Acta 1768:2627-2634

Acknowledgements

Beijing NMR Center (BNMRC) Peking University

Yunfei Hu Yi Zhang Hongwei Li Enwei Zhao

Prof. Bin Xia (BNMRC)

\$\$\$ 863, 973 from MOST, China

Beijing NMR Center

Beijing NMR Center (BNMRC)

- A national NMR center
- Funded by the Ministry of Science and Technology, the Ministry of Education, the Chinese Academy of Science and Military Council of Medicine
- Operated by Peking University
- A research center, mainly focus on the structures, dynamics, and other applications of biomacromolecules by high-field solution state NMR technique

NMR spectrometers at Beijing NMR Center

500 MHz, 600MHz, 700 MHz and 800 MHz spectrometers (with cryoprobes) : Biomacromolecule structural and dynamic studies

600 MHz and 400 MHz spectrometers (with RTprobes): routine services for chemistry

Wet lab at Beijing NMR Center

Computer Cluster

Members at Beijing NMR Center

Principle Investigators:

- Dr. Bin Xia (Professor)
- Dr. Changwen Jin (Professor)

Staff:

- Dr. Jian Lin (Associate professor)
- Dr. Hongwei Li (NMR manager)
- Dr. Yunfei Hu & Dr. Supu Mi (Postdocs)
- Administration:
 - Mr. Jinxin Yang (Lab manager)
 - Ms. Xiangli Hu & Ms. Zhe Su (Technicians)
- Graduate students: ~20
 Undergraduate students: ~10

Workshops

Jan. 2006: National NMR workshopSept. 2008: EMBO World Practical Course

EMBO World Practical Course

Structure Determination of Biological Macromolecules by Solution NMR

Beijing NMR Center, Peking University, CHINA Sep 8-15, 2008

Speakels and histractors

Martin Blacktedge
Frank Delaglio
Christian Griesinger
Stephan Sizesiek
Reter Stinter!
Changwan Jin
Halan Moti
Daniel Nieilispach
Minhard Alithmet

Michael Sattler Harald Schwalbe Ionio Shimada Bornd Simon Nico Tjandra Gaartan Vuistar Daiwan Yang

Konstantin Pervushin

EMBO

Organized by M. Blackledge, S. Grzesiek, C. Jin, M. Sattler Deadline for applications: June 30, 2008 Details are given under http://bnmrc.pku.edu.cn/embo_2008_mmr

Research Interests

- Protein structures
- Protein-protein/protein-nucleic acid interactions and complex structures
- Protein dynamics
- Membrane proteins

International Colaborations

- Prof. Honggao Yan, Michigan State University, USA
- Prof. Zongchao Jia, Queen's University, Canada
 Prof. Jiyan Ma, Ohio State University, USA
 Prof. Jun Liu, University of Toronto, Canada
 Prof. JP Jacquot, Universite Henri Poincare, France

Thank you !